CONSTRUCTIONS OF EXACT SOLUTIONS OF THE EQUATIONS OF GAS DYNAMICS IN THE PRESENCE OF DISCONTINUITIES

(POSTROENIE TOCHNYKH RESHENII URAVNENII ODNOMERNOI GAZODINAMIKI PRI NALICHII RAZRYVOV)

PMM Vol.22, No.5, 1958, p.720

E.V. RIAZANOV

(Moscow)

(Received 4 July, 1958)

In the paper by Korobeinikov and Riazanov [1] in order to find exact solutions with discontinuities, the particular solution of one-dimensional gas dynamics found by Sedov [2] was used.

Taking into account that the shock wave propagates into the gas at rest with initial variable density $\rho = \rho_1(r)$ and constant pressure p_1 , the authors showed that the special difficulty of the given problem consists in finding solutions of the following differential equation of the first order of the Riccati type:

$$\frac{dy}{d\mu} = vy^2 + \frac{1}{\mu} \left[v - 1 + \frac{v(\gamma - 1)}{2} \frac{\mu^{v(\gamma - 1)}}{\kappa + \mu^{v(\gamma - 1)}} \right] y + \frac{v\kappa(1 - \gamma^2)}{4\mu^2 \left[\kappa + \mu^{v(\gamma - 1)}\right]} \left(\kappa = -\frac{A}{B}\right)$$
(1)

The notation is as in reference [1]. In articles [1,3] special cases of equation (1) were examined when $\kappa = 0$, B = 0, y = 1.

In the present note, a general solution of the problem is given for arbitrary κ and γ . Using the particular solution $y = -(\gamma + 1)/2\mu$, we can obtain the general solutions of equation (1) in the form

$$y = -\frac{\gamma+1}{2} \frac{1}{\mu} + \frac{\left[\left(x + \mu^{\nu(\gamma-1)}\right)^{1/2}}{\mu^{\nu\gamma+1}\left[C_{1} - J_{1}(\mu)\right]}, \quad J_{1}(\mu) = \nu \int \frac{\left[x + \mu^{\nu(\gamma-1)}\right]^{1/2}}{\mu^{\nu\gamma+1}} d\mu$$
(2)

where C_1 is a constant. For $r_2(\mu)$ we get

$$r_2(\mu) = C_2 \mu^{-1/2(\gamma+3)} (C_1 - J_1)^{-1/\nu}$$

where C_2 is a constant of integration. Following the method presented in papers [1,3] it is easy to obtain all the relationships of interest to us

Exact solutions of equations of gas gynamics with discontinuities 1021

$$q(\mu) = \frac{2 \left[\varkappa + \mu^{\nu(\gamma-1)} \right]^{1/2}}{2 \left[\varkappa + \mu^{\nu(\gamma-1)} \right]^{1/2} - (\gamma+1) \mu^{\nu\gamma} (C_1 - J_1)}, \quad p_2(\mu) = p_1 \left\{ 1 - \frac{\gamma \mu^{\nu\gamma} (C_1 - J_1)}{\left[\varkappa + \mu^{\nu(\gamma-1)} \right]^{1/2}} \right\}$$

$$p_1(\mu) = \frac{2\gamma p_1}{BC_2^2} \frac{\mu^{2\nu\gamma+\gamma-1} (C_1 - J_1)^{2(\nu+1)/\nu}}{\left[\varkappa + \mu^{\nu(\gamma-1)} \right]^{1/2} \left\{ 2 \left[\varkappa + \mu^{\nu(\gamma-1)} \right]^{1/2} - (\gamma+1) \mu^{\nu\gamma} (C_1 - J_1) \right\}}$$

$$p_2(\mu) = \frac{2\gamma p_1}{BC_2^2} \frac{\mu^{2\nu\gamma+\gamma-1} (C_1 - J_1)^{2(\nu+1)/\nu}}{\left[\varkappa + \mu^{\nu(\gamma-1)} \right]^{1/2} \left\{ 2 \left[\varkappa + \mu^{\nu(\gamma-1)} \right]^{1/2} - (\gamma-1) \mu^{\nu\gamma} (C_1 - J_1) \right\}}$$

$$\nu_2(\mu) = \mp B^{1/2} C_2 \mu^{1/2} (1 - \gamma) \left[\varkappa + \mu^{\nu(\gamma-1)} \right]^{1/2} (C_1 - J_1)^{-1/\nu}$$

The arbitrary function P(x) will then be as follows:

$$P(x) = \frac{2(s+2)}{B^{\gamma}(\gamma-1)} \left\{ \frac{p_1}{\mu(x)^{\gamma \gamma}} \left[1 - \frac{\gamma \mu^{\gamma \gamma}(x) |C_1 - J_1(x)|}{|x + \mu(x)^{\gamma(\gamma-1)}|^{1/2}} \right] - C \right\}$$

where $\mu(\mathbf{x})$ is found from the relation

$$x^{\nu_{l}(2+s)}\mu^{\nu_{l}(\gamma-1)}\left[C_{1}-J_{1}(\mu)\right]-C_{2}^{\nu}=0$$

The integral $J_1(\mu)$ can be expressed in terms of elementary functions in only two cases (in addition to the one examined in [1]

$$\gamma = \frac{n_0 + 2}{n_0 + 1}$$
 or $\gamma = \frac{2n_0 + 3}{2n_0 + 1}$ $(n_0 = 0, 1, 2, ...)$

The solution constructed here can also be obtained by another method [4].

BIBLIOGRAPHY

- Koroleinikov, V.P. and Riazanov, E.V., Postroenie tochnykh razryvnykh reshenii uravnenii odnomernoi gazodinamiki i ikh prilozheniya (Construction of exact solutions with discontinuities of onedimensional gas dynamics and their applications). *PMM* Vol. 22, No. 2, 1958.
- Sedov, L.I., Ob integrirovanii uravnenii odnomernogo dvizheniya gaza (On the integration of the equations of one-dimensional gas motion). Dokl. Akad. Nauk SSSR Vol. 90, No. 5, 1953.
- Korobeinikov, V.P., Tochnoe reshenie nelineinoi zadachi o vzryve v gaze pri peremennoi nachal'noi plotnosti (Exact solution of the nonlinear problem of a discontinuity in a gas with variable initial density). Dokl. Akad. Nauk SSSR Vol. 117, No. 6, 1957.
- 4. Shishkin, I.S., O tochnykh resheniyakh uravnenii odnomernoi gazodinamiki s udarnymi i detonatsionnymi volnami (On exact solutions of the equations of one-dimensional gas dynamics with shock and detonation waves). Dokl. Akad. Nauk SSSR Vol. 127, No. 1, 1958.